网络视频网站数据爬虫
一、核心功能:基础数据采集与处理
核心功能是爬虫的 “基石”,主要目标是精准、稳定地获取视频平台的核心公开数据,并完成初步清洗,为后续分析或应用提供原料。
1. 目标数据采集(核心能力)
爬虫可针对主流视频平台(如 B 站、抖音、YouTube、腾讯视频等),定向采集以下几类关键数据,具体采集范围需根据平台接口限制或页面结构调整:
数据类别 具体采集内容 应用场景举例
视频基础信息 视频 ID、标题、发布时间、时长、封面图 URL、播放量、点赞量、收藏量、评论数、分享数 视频热度分析、内容分类统计
创作者信息 创作者 ID、昵称、头像 URL、粉丝数、关注数、发布视频总数、账号认证类型(如 “UP 主”) 创作者画像分析、达人筛选
视频内容数据 视频播放地址(需区分 “可下载”“仅在线播放” 权限)、字幕文本(公开字幕)、标签 / 分类 视频内容检索、字幕关键词分析
互动数据 评论内容(用户名、评论时间、评论点赞数、回复链)、弹幕内容(发送时间、弹幕文本) 用户情感分析、热门话题提取
2. 数据清洗与标准化
采集到的原始数据常存在格式混乱(如时间戳格式不统一)、冗余(如重复评论)、无效值(如播放量为 “--”)等问题,爬虫需内置处理逻辑:
格式统一:将不同平台的时间戳(如 “2024-05-20”“1684567890”)统一转为标准时间格式,播放量(如 “1.2 万”“12000”)统一转为数值型;
冗余 / 无效数据过滤:删除重复的评论、弹幕,过滤掉 “无意义文本”(如纯表情评论)或无效字段(如封面图 URL 失效);
关键词提取:基于 NLP(自然语言处理)工具(如 jieba、NLTK),从视频标题、评论、字幕中提取核心关键词(如 “AI 生成”“美食教程”),为后续分类打标签。
3. 数据存储与导出
采集并清洗后的数据需持久化存储,支持多种存储方式以适配不同需求:
本地存储:适合小规模数据,如 Excel(.xlsx)、CSV(逗号分隔文件,便于 Excel/Python 读取)、JSON(轻量格式,适合程序调用);
数据库存储:适合大规模、高并发采集场景,如关系型数据库(MySQL、PostgreSQL,用于结构化数据如视频基础信息)、非关系型数据库(MongoDB,用于非结构化数据如评论、弹幕);
数据导出:支持按需导出为可视化工具兼容格式(如 PowerBI、Tableau 可读取的 CSV/Excel),或 API 接口格式(供其他系统调用)。
二、扩展功能:提升采集效率与场景适配性
扩展功能是在核心能力基础上,针对 “高并发、反爬对抗、多场景需求” 设计的进阶能力,决定爬虫的稳定性与实用性。
1. 反爬对抗与稳定性优化
主流视频平台均设有反爬机制(如 IP 封锁、Cookie 验证、验证码、接口签名),爬虫需通过技术手段适配,确保采集过程
大数据