基于深度学习的电价预测
电价预测模型 — 独立项目
时间:2024年暑期
基于时间序列与深度学习模型(LSTM、Transformer)构建电价预测系统,探索短期与中长期预测的差异化效果;
实现数据预处理与特征工程(缺失值处理、归一化、滞后特征构造、节假日与天气特征融合),提升模型鲁棒性;
在实验中对比了ARIMA、XGBoost与改进的Transformer结构,并以MAPE、RMSE为指标进行量化评估;
使用PyTorch + sklearn 完成模型搭建与训练,并基于可视化分析解释预测结果,撰写完整技术报告;
项目代码与报告开源至GitHub,积累实践经验并初步形成科研表达能力
Summer 2024
Developed a time-series forecasting system for electricity prices using LSTM and Transformer-based models, comparing short-term and long-term forecasting performance.
Designed and implemented data preprocessing & feature engineering, including missing value imputation, normalization, lag features, and integration of holiday/weather factors.
Conducted benchmarking with ARIMA, XGBoost, and enhanced Transformer variants, evaluated via MAPE and RMSE metrics.
Built and trained models using PyTorch and scikit-learn, with visualization for interpretability and a full technical report.
Open-sourced project on GitHub, gaining hands-on experience in applied machine learning and technical reportin
人工智能
大数据