程序聚合 软件案例 某公司生产运营管理系统-某公司生产运营管理系统

某公司生产运营管理系统-某公司生产运营管理系统

行业:企业内部管理
载体:网站
技术:Java、Node.js、Spring Boot、Vue

业务和功能介绍

运用BIM、AR\VR、大数据、人工智能等新一代信息技术,保证生产过程信息化平台的前瞻性和先进性,并从智慧应用、数据资源、平台支撑、基础环境、系统集成等多维度全方位实现平台基础设施、数据资源、业务应用的成果复用,充分共享,促进业务流程优化和工作模式创新,全面提升综合智能决策水平。通过对标准化的数据进行态势分析处理、可视化呈现、多方提醒等方式实现对工程项目管理的辅助决策。
BIM+GIS融合是实现地理信息模型从宏观到微观整合互补的有效方法。借助BIM与GIS技术的整合应用,在“一张图”上对工程建造全过程的数字虚拟与现实物理数据相互映射、虚实互融。通过对数据的收集、分析、共享,并进行高层次数据分析,全面监控项目安全、进度、质量、资金、视频等关键信息要素。

项目实现

此次项目参与人员6人,开发周期12个月,我是项目负责人,负责设计架构,功能调研确理规划,任务分解,部分模块编码。
项目使用了SpringCloudAlibaba+vue3分布式B/S架构开发,实现了甲方在项目上的对人员管理、质量管理、安全管理、物料管理、进度管理、监控监测等功能需求,解决了甲方人员在项目中便携的查看二三维图纸并执行相关剖面分解等操作的业务痛点,低代码快速创建大屏可视化报表的业务痛点。

示例图片视频


洛阳市瀍河回族区优你维云计算中心(个体工商户)
30天前活跃
交付率:100.00%
相似推荐
豆瓣电影信息爬虫系统- 豆瓣电影信息爬虫系统
智能爬虫:自动爬取电影基本信息(名称、链接、上映时间、国家、想看人数等) 评论采集:批量获取电影评论,支持分页处理 数据分析:自动排序、统计词频、分析高频/低频词汇 数据可视化:生成Top 5电影柱状图和评论词云图 多格式存储:支持CSV和JSON两种数据格式
大学生求职神器
一、 立项背景与目标 1. 立项背景 当前就业市场竞争激烈,央国企及互联网大厂成为毕业生首选,导致竞争白热化。这些单位招聘流程独特(如注重行测、申论、结构化面试),存在信息壁垒,而传统招聘平台缺乏针对性服务。学生普遍面临准备盲目、资源匮乏、求职效率低下的困境。 2. 项目目标 产品定位: 打造一款专注于央国企及互联网大厂求职的 AI驱动型一站式解决方案平台。 用户目标: 为学生提供从职业规划到拿到Offer的全流程深度赋能;为企业建立精准、高效的预备人才库。 商业目标: 通过会员订阅、精品课程与B端服务实现商业价值,成为垂直领域标杆。 二、 软件功能与核心模块 “企职帮”聚焦核心场景,其功能体系围绕求职全链路构建,旨在提供深度赋能的求职体验,具体流程与核心模块如下所示: 1. AI赋能核心模块 AI职业规划与测评: 通过专业测评与AI分析,为用户规划最适合的央国企/大厂岗位方向,并提供个性化发展路径。 AI简历优化: 针对央国企(重背景、稳重型)与大厂(重项目、数据型)的不同偏好,提供精准的AI评测与优化建议,显著提升简历通过率。 AI模拟面试: 提供高度仿真的专属面试场景(如央国企结构化面试、大厂技术/业务面),并进行实时反馈与评估,帮助用户查漏补缺、提升实战能力。 2. 央国企特色资源库 央国企智能选岗与推荐: 基于全面的企业数据库与AI算法,根据用户背景精准推荐匹配度高的岗位,解决“我能报什么”的核心问题。 央国企真题题库: 聚合行测、申论、专业知识等历年笔试真题,支持在线练习与解析,为备考提供强力支持。 专业解读: 深度解读各专业可报考的央国企岗位,打破信息壁垒。 3. 内容与商业体系 求职课程与名师直播: 提供《央国企笔试通关秘籍》、《大厂面试全攻略》等体系化课程与直播,由资深HR与行业专家授课。 会员专区: 整合核心AI功能、精品课程、真题库等资源,为付费会员提供深度服务,实现商业化变现。 三、 业务流程与功能路径描述 以一名目标进入央国企或大厂的技术岗学生为例: 1. 诊断与规划阶段 路径: 新用户完成职业测评与AI职业规划,系统根据其专业与测评结果,推荐“央企信息中心”与“互联网大厂技术部”等主攻方向。 价值: 帮助用户快速定位,避免盲目海投,节约求职成本。 2. 准备与赋能阶段 路径: 简历打造: 使用AI简历优化功能,分别生成针对“央企”和“大厂”的两个不同侧重点的简历版本。 笔试备考: 进入真题题库刷题,学习《央国企笔试必考知识点》等录播课程。 价值: 提供前所未有的针对性备考资源,让学生有的放矢。 3. 应聘与实战阶段 面试模拟: 收到面试通知后,立即进入AI模拟面试进行全真模拟,并依据生成的评估报告进行针对性改进。 价值: 将不确定性最高的面试环节转化为可训练、可优化的过程,极大提升上岸信心与成功率。
基于langchain4j的AI知识问答系统
1. 项目背景:开发面向Java开发者的智能问答与学习辅助平台,集成RAG向量知识库、大模型调用、联网搜索等功能,提升Java面试准备与编程学习效率。 2. 会话记忆:集成OpenAI和Qwen大模型,封装统一的模型调用接口,实现会话记忆机制,维护多轮对话上下文,提升交互连贯性与用户体验。 3. MCP工具调用:对接质谱MCP工具 实现联网搜索能力,扩展知识库边界,支持实时信息获取。 4. RAG向量知识库:通过 RAG架构 将用户问题与知识库内容结合,提升大模型回答的准确性和上下文相关性。 5. 项目成果:形成一套完整的AI知识库系统,支持Java面试题检索、学习路线推荐、联网智能问答;收录2000+条Java学习与面试资料;
OA
结合公众号和小程序,web端医院OA,各种审批流程和表单,考勤打卡,公告,工作日志等 项目前端后端开发,都是通过自己一个人开发创建 宿主采用vs code,vs2022 SQL2008 语言:C# vue3 平台兼容性强,兼容各种浏览器,适配手机型号 结合公众号和小程序,web端医院OA,各种审批流程和表单,考勤打卡,公告,工作日志等 项目前端后端开发,都是通过自己一个人开发创建 宿主采用vs code,vs2022 SQL2008
个人卡密商户平台
1. 个人卡密销售网站,共客户购买获取卡密 2. 首页展示,游戏入口,游戏详情,卡密领取4个页面 3. 实现web端,移动端页面适配,提供新颖的动画效果,满足基础的中英文布局的美观。 4. 后续会继续接入下单相关的功能性页面
帮助文档   Copyright @ 2021-2024 程聚宝 | 浙ICP备2021014372号
人工客服